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Abstract
The high-order fluid model developed in part I of this series is employed here to study the
propagation of negative planar streamer fronts in pure nitrogen. The model consists of the
balance equations for electron density, average electron velocity, average electron energy and
average electron energy flux. These balance equations have been obtained as velocity
moments of Boltzmann’s equation and are here coupled to the Poisson equation for the space
charge electric field. Here the results of simulations with the high-order model, with a
particle-in-cell/Monte Carlo (PIC/MC) model and with the first-order fluid model based on the
hydrodynamic drift–diffusion approximation are presented and compared. The comparison
with the MC model clearly validates our high-order fluid model, thus supporting its correct
theoretical derivation and numerical implementation. The results of the first-order fluid model
with local field approximation, as usually used for streamer discharges, show considerable
deviations. Furthermore, we study the inaccuracies of simulation results caused by an
inconsistent implementation of transport data into our high-order fluid model. We also
demonstrate the importance of the energy flux term in the high-order model by comparing with
results where this term is neglected. Finally, results with an approximation for the high-order
tensor in the energy flux equation is found to agree well with the PIC/MC results for reduced
electric fields up to 1000 Townsend, as considered in this work.

(Some figures may appear in colour only in the online journal)

1. Introduction

Streamer discharges occur in nature and technology,
predominantly in pulsed high-voltage discharges; at their
rapidly propagating tips electric fields well above the
breakdown value are maintained that create high electron
energies and reaction rates. Streamers occur in lightning
and sprites [1–4, 17] as well as in industrial applications
such as lighting [5–7], treatment of polluted gases and
water [8], disinfection [9], plasma jets and bullets [10–
14] and plasma-assisted combustion [15, 16]. Further
optimization and understanding of such applications depend
on an accurate knowledge of the electron dynamics during
streamer development.

A Monte Carlo (MC) technique is able to track the electron
distribution in phase space, yielding both electron density
profiles and electron energy distribution. However, a full
particle model long has been computationally too demanding
or too inaccurate due to the used super-particle techniques,
and even now the parameter range of simulations is limited.
For recent progress in particle and hybrid models we refer to
[18–22]. Due to the computational costs and limitations of
particle models, up to now mainly fluid approximations have
been used to model the structure and evolution of streamer
discharges in two or three spatial dimensions. These fluid
models were restricted almost exclusively to the hydrodynamic
reaction drift diffusion approximation combined with the local
field approximation, though the shortcomings of this model
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have been acknowledged and documented [18, 19, 22–30].
They arise from the fact that within the streamer front the
electron density develops large spatial gradients and a complex
interaction with the field. This in turn limits the use of
the local field approximation as the electron energy does not
immediately relax to the value determined by the local field,
but depends on the electric field in a wider spatial range.

The aim of part I and this paper is to develop and test a
better fluid approximation for streamer discharges in gaseous
media. In the part I [31] we have derived a high-order fluid
model, whose predictions for streamer dynamics will be tested
in this paper. The high-order fluid model contains equations
for the electron density, for the average electron velocity,
for the average electron energy and for the average electron
energy flux. It was obtained from velocity moments of the
Boltzmann equation and closed in the local mean energy
approximation. Momentum transfer theory [32–34] was used
to evaluate the collisional terms in the balance equations, and
particular emphasis was placed upon the correct representation
of momentum and energy transfer in energy-dependent non-
conservative collisions. The system was truncated at the level
of the energy flux balance and simplifying approximations
were introduced in the momentum and energy flux balance
equations in order to close the system. In particular, in
the momentum balance equation it was assumed that the
distribution of velocities is isotropic assuming isotropy of the
temperature and pressure tensors. Thus, the pressure tensor
was reduced to a scalar kinetic pressure. Furthermore, the same
approximation was used in the energy flux balance equation.
If one assumes an isotropic distribution of velocities then the
contribution of higher terms including the high-order heat
flux tensor and the high-order pressure tensor is relatively
small and could be neglected. However, the energy flux
transported by the convective particle motion should be treated
and implemented carefully. The high-order tensor in the
energy flux balance equation is expressed in terms of lower
moments using the simplifying assumption that the pressure
tensor is isotropic. Thus, with such a treatment of the random
motion and the high-order terms associated with the energy
flux of the drift motion, we have obtained a complete and
closed system of fluid equations sufficient to determine all
macroscopic streamer properties.

In this paper the system of fluid equations derived in the
preceding paper is solved numerically for a negative planar
streamer ionization front and compared with results of a
particle-in-cell/Monte Carlo (PIC/MC) particle model and of
the first-order fluid model. The comparison with the particle
model confirms that our high-order fluid model approximates
the particle behaviour very well. The comparison with
the commonly used first-order fluid model of reaction–drift–
diffusion type shows the short comings of this classical model.
This concerns the front velocities, the ionization levels behind
the front as well as the electron energy distribution in the
high-field region ahead of the front and in the ionized low-
field region in the streamer interior. Actually, the inaccurate
ionization level in the streamer interior in the first-order
fluid model is a direct consequence of the inaccuracies of
the electron energy distribution [18, 19]. Inaccurate electron

densities and energies also have direct consequences for the
gas chemistry in the streamer interior [35–40]. In addition to
the accuracy and comprehensiveness of our high-order fluid
model, its firm theoretical foundation is certainly an additional
favouring factor.

We begin by presenting in section 2 the differential
equations governing the electron density, the average electron
velocity, the average electron energy and the average electron
energy flux. Then we discuss the numerical algorithm used for
the solution of the differential equations. The specific elements
of this discussion include a brief mathematical reminder on
hyperbolic systems, the implementation of initial and boundary
conditions and the discretization in space and time. Our
numerical analysis is performed in a 1D model, because in
this paper we are not interested in a streamer morphology
and related phenomena where a full multidimensional model
is required. We use a PIC/MC method as an alternative
technique to verify our high-order fluid model. Following
the recent work of Li et al [18–20], in section 3 we give a
brief description of this method with particular emphasis on
the construction of planar fronts in the particle model. The
high-order fluid model is then applied in section 4 where
examples of planar fronts in pure nitrogen are presented.
The effects of photoionization are not considered and present
theory can be applied to negative fronts in discharges where
photoionization is very weak (high-purity nitrogen is a good
example). Results demonstrating the validity of a high-order
fluid model compared with the PIC/MC are shown. Following
the preceding paper, we demonstrate the importance of a
consistent implementation of transport data in fluid models, but
now instead of using the first-order model as in the preceding
paper, we employ our high-order model. Along, similar
lines, the accuracy of the two-term approximation for solving
Boltzmann’s equation in the context of high-order fluid studies
of the streamer discharges is examined. We pay particular
attention to the role of the electron energy flux. For illustrative
purposes, calculated results for the planar fronts based on a
high-order model with energy flux and those calculated without
energy flux are compared over a range of electric fields in order
to verify the physical arguments associated with the solution
regimes and closure assumptions outlined in the preceding
paper. Next, we examine the closure assumption associated
with the explicit influence of the high-order tensor appearing
in the energy flux equation on the streamer dynamics. We
conclude that the explicit contribution of the high-order tensor
in the energy flux equation is negligible and it makes a notable
difference only in the velocity of the planar fronts. In summary,
in this paper we present the numerical solution of a high-order
fluid model, test and verify it on the more microscopic PIC/MC
model, and discuss how inherent streamer properties deviate
when simpler fluid models are used.

2. Model description and numerical solution

2.1. The high-order fluid model

In our preceding paper [31] we have developed a high-order
fluid model for streamer discharges. The balance equations
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were obtained as velocity moments of the Boltzmann equation
while the collisional terms were evaluated using momentum
transfer theory. We have truncated the system of fluid
equations at the level of energy flux balance by reducing the
pressure tensor to a scalar kinetic pressure and by neglecting
the high-order terms associated with the flux of thermal motion.
The energy flux of the drift motion, however, is included. For
more details of the derivation we refer to [31]. The derived
model consists of a set of differential equations for the electron
density n, for the average electron velocity v, for the average
electron energy ε and for the average electron energy flux ξ:
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where E is the electric field, m and e are the electron mass
and charge, T0 is the gas temperature and k is the Boltzmann
constant. The average collision frequencies for momentum
ν̃m and energy transfer in elastic collisions ν̃e are given by
equations (42) and (43) of the preceding paper while ν̃I and ν̃A

are the ionization and attachment rate coefficients. The term $

represents the average energy lost in one energy relaxation time
ν̃ −1

e and is given by equation (45) of the preceding paper. β is
a parameter introduced to approximate the high-order tensors
in the energy flux equation in terms of lower moments (see
equation (50) of the preceding paper).

Taking into account the rapid growth and propagation of
the streamers with orders of the electron drift velocity and the
relatively slow drift velocity of ions, the ions are approximated
as immobile, as usually done when streamer ionization fronts
are analysed. Therefore, the charge densities nion due to the
positive and negative ions change only due to ionization and
attachment:

∂nion

∂t
= −n

(
ν̃A − ν̃I

)
. (5)

In order to account for the space charge effects, the system
(1)–(5) is coupled with the Poisson equation for the potential
φ, which then enables the calculation of the electric field E:

∇2φ = − e

ϵ0
(nion − n), E = −∇φ, (6)

where ϵ0 is the dielectric constant.

2.2. 1D hyperbolic system of balance laws

In this paper, we simulate the propagation of negative streamer
fronts in pure N2 at atmospheric pressure and at an ambient
temperature of 298 K in 1D. As N2 is a non-attaching gas,
electron attachment does not appear in the source terms of
our system (1)–(6). The effects of superelastic collisions

are not taken into account and we consider only single
ionization with ionization energy ϵI. The electron dynamics
of equations (1)–(4) in 1D is given by the following non-linear
system of balance laws:
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where the primitive variables are
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and the source term is
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The equation for the ions (5) is without electron attachment

∂nion

∂t
= ñνI, (11)

while the Poisson equation (6) in 1D has the following simple
form:

∂E

∂x
= e

ϵ0
(nion − n). (12)

Hence, the streamer dynamics in 1D for a non-attaching gas is
described by the system of equations (7)–(12).

Now we can apply the theory for hyperbolic systems of
balance laws [41–43] to our system (7)–(9). The matrix A(u)

has four eigenvalues:

λ1,2 = ±γ
√

β −
√

β(β − 1),

λ3,4 = ±γ
√

β +
√

β(β − 1),
(13)

where γ =
√

2ϵ/3m. All eigenvalues are real and distinct
when

β = 0 or β ! 1. (14)

This means that system (7) is hyperbolic if condition (14)
holds. Although the eigenvalues (13) are simple, the
corresponding right and left eigenvectors have a rather
complicated form, which makes it impossible to work with
the vector of Riemann invariants.
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2.3. Initial and boundary conditions

The electric field E = Eêx (where êx is the unit vector in
the x direction) drives the dynamics. We take E as a positive
value; therefore electrons drift to the left, and negative streamer
ionization fronts move to the left as well. To create steady
propagation conditions for the negative front, the electric field
on the left boundary x = 0 is fixed to the time-independent
value E0:

E(0, t) = E0 > 0. (15)

The electric field forx > 0 is calculated by integrating equation
(12) numerically over x, with (15) as a boundary condition.
The right boundary is located at x = L; in all calculations we
set the system length L to 1.2 mm and we use 1500 grid points.

All simulations are started with the same initial Gaussian-
type distribution for electrons and ions:

n(x)|t=0 = ni exp

[

− (x − x0)
2

σ 2

]

, (16)

where we have chosen ni = 2 × 1018 m−3, x0 = 0.8 mm and
σ = 0.029 mm. The initial conditions for the average electron
velocity, average electron energy and average electron energy
flux are taken to be spatially homogeneous. The actual values
of these quantities are calculated using a multi-term solution
of Boltzmann’s equation, as already discussed in the preceding
paper.

As discussed in the appendix, we use homogeneous
Neumann boundary conditions for all components of u at both
ends of the system, so that all electron quantities may flow
out of the system. Only for the electron density at x = L do
we employ a homogeneous Dirichlet boundary condition to
prevent electrons from diffusing out. However, all calculations
end before the ionization reaches the boundary, which means
before the boundary conditions start to become relevant.

Further details on the numerical discretization of the
system can be found in the appendix. Extended mathematical
and/or numerical studies of the system (7) are deferred to a
future work.

3. The MC particle model and the first-order fluid
model

In the next section, we will compare the simulation results
of our high-order model with those of the PIC/MC particle
model and with the first-order fluid model. Here these models
are briefly described.

3.1. The MC particle model

An MC model following the motion of individual electrons
contains the full physics that is to be approximated by a fluid
model. The successful comparison of a fluid model with such
a particle model validates the fluid model; of course, the same
cross-sections have to be used in both models.

The construction of a planar front is straightforward in
fluid models, as the spatial derivatives are simply evaluated in
one direction. However, in the particle model electrons move

in all three spatial dimensions and hence, the three-dimensional
setting has to be restricted as in the previous work [18]. An
essentially one-dimensional setting is achieved by considering
only a small transversal area T of the front and by imposing
periodic boundary conditions at the lateral boundaries. The
electric field is calculated only in the forward direction x

through

Ex(x, t) = Ex(x0, t)

+
∫ x

x0

dx ′
∫

T

dy dz

T

e(nion − n)(x ′, y, z, t)

ϵ0
, (17)

where Ex is the electric field in the x-direction, and x0 is an
arbitrary position. Therefore, fluctuations of the transversal
field due to density fluctuations in the transversal direction
are not included. The density fluctuations projected onto the
forward direction depend on the transversal area T over which
the averages are taken.

3.2. The first-order fluid model

The first-order fluid model is the multiply used reaction–drift–
diffusion model that also was called the ‘classical fluid model’
in our previous work [19, 22]; in these previous papers, it
was already shown that the model can only serve as a first
approximation, but cannot reproduce the results of a particle
simulation quantitatively.

The steps of derivation of this model were discussed and
criticized in our previous paper [31]. The model is based on
the hydrodynamic reaction–drift–diffusion approximation

∂n

∂t
− ∂

∂x

(
nµE + D

∂n

∂x

)
= nνI, (18)

where µ and D are electron mobility and diffusion coefficient,
respectively. Transport coefficients used as an input in this
model are functions of the local electric field as discussed
in the preceding paper. In order to account for the space
charge effects, equation (18) is coupled to the equations for ion
density (11) and for the electric field (12). For the purpose of
comparison, we use the same numerical schemes to discretize
equation (18) and the same initial and boundary conditions as
introduced above for the high-order model.

4. Results and discussion

In this section, we present and compare the simulation results
obtained with our high-order fluid model, with the PIC/MC
method and with the first-order fluid model. We consider
the configuration described in section 2.3. The transport
coefficients required as an input in both the first- and the high-
order fluid model are given in our preceding paper [31]. They
were calculated from cross-sections for electron scattering in
N2 through a multi-term solution of the Boltzmann equation.
Details of the calculation together with the prescription how
to use the data in modelling are given in the same paper. It is
important to emphasize that the same collisional cross-sections
for electrons in N2 are used in all models presented in this paper.
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(a)

(b)

(c)

Figure 1. Temporal evolution of the electron density (a), ion density (b) and electric field (c) in a planar front in N2. Shown are the spatial
profiles obtained with three different models as indicated on the graph. Flux transport data are used as an input in fluid models. The
externally applied reduced electric field is 590 Td.

4.1. Simulation of planar fronts: overall comparison between
the models

Figure 1 shows the temporal evolution of the electron and ion
densities and of the electric field in N2, when the electric field
ahead of the front is 590 Td (or equivalently 145 kV cm−1

at atmospheric pressure and at a temperature of 298 K).

The initially Gaussian electron density shows the behaviour
observed many times in past: first, it grows due to the ionization
processes; then charge separation occurs in the electric field
due to the drift of oppositely charged particles in opposite
directions, and the initially homogeneous electric field is
distorted; and finally, when the field in the ionized region
becomes more and more screened, the ionization stops in
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Figure 2. Velocities of planar fronts as a function of the electric
field obtained with the first- and the high-order fluid models and
with the PIC/MC method; different sets of input data are used as
indicated on the graph. The electron flux drift velocity as a function
of E/n0 is also included. We remark that the negative sign of all
velocities is removed here.

the ionized region and the typical ionization front profiles
of electron and ion densities and of the electric field are
established. The initial ionization avalanche is then said to
have developed into a streamer.

We note that the results of the high-order fluid model
and of the PIC/MC simulation agree very well. The streamer
velocity is almost the same, as well as the electric field and
the electron/ion density. Conversely, when the first-order fluid
model is applied, the streamer velocity is lower, with a lower
electron density in the streamer head and in the streamer
channel. In figure 2, we show how the streamer velocity
depends on the applied reduced electric field E/n0. In order to
calculate the streamer velocity we have followed the evolution
of a certain level (2ni) of the electron density at the streamer
front. We see that for increasing E/n0 the differences of the
streamer velocities between the first-order and the high-order
fluid model increase slightly. On the other hand, the velocities
of the high-order fluid model and the PIC/MC agree very well.
Similar trends are observed for the electron density behind
the ionization front. While the first-order model generally
underestimates this electron density, the high-order model
approximates the PIC/MC results much better. This agreement
holds in the full range of fields E/n0 explored, while the
differences between the first-order model and the MC model
increase with increasing E/n0.

In some aspects the results presented in figures 1 and 2 are
consistent with observations by Li et al [18, 19] and by Kanzari
et al [28]. In particular, Li et al [18, 19, 22] already have found
considerable differences in velocities and ionization densities
between the MC particle model and the classical fluid model;
they have proposed an extension of the first-order fluid model
in [19], based on a phenomenological gradient expansion
suggested in [53, 54] to get better agreement of the fluid model

Figure 3. Average electron energy in three different models at time
0.7 ns. Profiles of the electric field and the electron number density
from the first-order fluid model are also included to indicate the
location of the front. Calculations are performed for E/n0
of 590 Td.

with the results of the particle model. The extended fluid
model of Li and co-workers uses a density gradient expansion
of the source term to approximate the spatial non-locality of
the ionization processes at the streamer front. However, this
model overestimates the particle results for the electron density
in the streamer channel when the field is below 125 kV cm−1

(for standard temperature and pressure of the background gas)
by up to 4%, while for an electric field of up to 200 kV cm−1,
the extended fluid model underestimates the particle results
by up to 9% [19]. On the other hand, the differences in
the electron density behind the ionization front between our
systematically derived high-order fluid model and the PIC/MC
model do not exceed 5% for electric fields of up to 245 kV cm−1

as considered in this work, thus demonstrating that we correctly
derived and implemented our high-order fluid model.

4.2. Electron energy profiles in different front regions within
the different models

We now focus on the characteristic differences in the profiles of
the electron density. Figure 3 shows the profiles of the average
electron energy for all three models, as well as the profiles
of the electric field and of the electron density at t = 0.7 ns
for the first-order model only. In the first-order model, the
average electron energy is assumed to adapt to the electric
field instantaneously, therefore it was derived from the local
electric field for the plot. However, the profile of the average
energy obtained by the high-order fluid and PIC/MC models
is more complex.

We distinguish three different spatial regimes, the streamer
head where most ionization occurs and where electron density
and electric field have large gradients, the region ahead of the
front where the electric field is high and the electron density
vanishes, and the streamer interior where the electron density
is finite and the electric field is low or vanishing.

First, figure 3 shows that in the streamer head the average
electron energy given by the high-order fluid and PIC/MC
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methods are higher than that in the first-order fluid model.
Since the ionization rate in this energy range is an increasing
function of the electron energy, it is clear that the higher the
average electron energy, the higher is the ionization rate. These
observations are consistent with those made by Li et al [18, 19].

Second, in the region ahead of the front the average energy
in the high-order model has a slope, which reflects the so-
called non-local effects. In this region, the PIC/MC method
is not efficient as there are not enough particles to sample
the spatially resolved average electron energy correctly. It
must be emphasized that the spatial variation of the average
electron energy is present even in the avalanche phase where
an initial spatially homogeneous electric field is not distorted
due to space charge effects. According to arguments given
in [18], the leading edge of an ionization front has essentially
the same dynamics and therefore also the same energy slope as
an electron swarm. In the past, many swarm-oriented studies
have been performed to explore the effects of spatial variation
of the average energy through the swarm and many phenomena
have been discovered [34, 44–46]. Almost certainly, one of
the most striking phenomena is the difference between the
flux and the bulk transport data which follows directly from
spatially dependent non-conservative collisions (ionization
and/or electron attachment) resulting from a spatial variation
of average electron energies within the swarm [34, 44, 47, 48].

Third, figure 3 shows strong disagreement between the
average energy in the first-order model and the average energies
predicted by high-order fluid and PIC/MC methods in the
streamer interior. Within the first-order fluid model the average
electron energy attains approximately the thermal value. This
follows directly from the local field approximation and from
our Boltzmann equation calculation of the mean energy in the
limit of vanishing electric field. It should be emphasized that
thermal effects of background molecules are included in our
Boltzmann equation analysis. In contrast to the first-order fluid
model, the average electron energy given by high-order fluid
and PIC/MC methods is significantly higher. This is another
manifestation of the non-local effects, but this time, these
phenomena take place in the streamer channel. As the velocity
of the front is higher than the electron drift velocity even
in the streamer head region, electrons slowly relax to lower
energies in the lower or vanishing field in the streamer interior.
This causes the spatial decay of average electron energy in the
high-order fluid and PIC/MC models, that can be observed in
figure 3. This decrease in the average electron energy follows
directly from the energy dependence of the collision frequency
for energy relaxation in elastic and inelastic collisions.

Another interesting feature is the disagreement between
the high-order and PIC/MC results for the average electron
energy in the streamer channel. We believe that this
disagreement arises from the limitations associated mainly
with the high-order fluid model. Although our PIC/MC
method does not treat thermal effects of the background
molecules, electron energies are too high for this to be
significant. Most probably this disagreement arises from an
increased anisotropy of the distribution function, which in turn
limits the adequacy of the closure assumptions associated with
the pressure tensor. In fact, the average energy in the streamer

Figure 4. Ratio between transverse and longitudinal components of
the temperature tensor as a function of electron energy in N2 based
on the multi-term approach for the Boltzmann equation.

channel varies between 0.5 and 1 eV and exactly in the same
energy region the cross-sections for vibrational excitation grow
rapidly in magnitude (a few orders of magnitude in a very
narrow energy range) while the cross section for momentum
transfer in elastic collisions varies relatively slowly with the
electron energy. This will induce strong anisotropy of the
distribution function, and it is clear that the assumption of
the isotropy of the temperature tensor is certainly problematic
under these conditions. These physical arguments are verified
in figure 4 where the ratio between transverse and longitudinal
components of the temperature tensor for electrons in N2

is shown. It shows a minimum in the profile between 0.5
and 1 eV, which is a clear sign of an increasing anisotropy
of the distribution function in velocity space. It should be
emphasized that for the range of electric fields considered
in this work, the different average energies in the streamer
channel observed in the high-order fluid or PIC/MC model
cannot induce significant changes in the electron density.
Another physical argument which can be used to address
the differences between the average electron energies in the
streamer channel is associated with the accuracy of the PIC/MC
method. In the energy range around 1 eV one must carefully
follow the electrons in a PIC/MC simulation. If the time step
between two successive collisions is too big then the energy
losses due to rapidly increasing cross-sections for vibrational
excitation are not going to be included accurately. This is
of less importance for the collisional processes whose cross-
sections do not vary so rapidly with the electron energy. One
way to overcome this problem is to reduce the time step in
a PIC/MC method but the penalty is a significant increase in
the computation time. It is clear that additional testing and
calculations are required to resolve this issue.

Figure 5 shows the average electron velocity through the
streamer front. As for the average electron energy, in the
first-order model the average velocity of electrons is obtained
from the profile of the electric field assuming the local field
approximation. We see that the average velocity of electrons
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Figure 5. Profiles of the average electron velocity in the first- and
the high-order fluid models and of the PIC/MC model at time 0.7 ns.
Profiles of the electric field and of the electron number density from
the first-order model are also included to indicate the location of the
front. Calculations are performed for E/n0 of 590 Td. We remark
that all velocities are negative, and their absolute value is plotted.

follows changes in the electric field instantaneously: in the
outer streamer region where the electric field is constant
the average velocity also has a constant value while in the
streamer channel the average velocity is essentially zero.
When considering the profiles of the average velocity derived
by the high-order model, one may observe the characteristic
slope of this quantity in the outer region of the streamer while in
the streamer channel it vanishes. This stands in contrast to the
profile of the average energy. The relaxation of the average
velocity is determined by the momentum transfer collision
frequency which is a factor of 2.5×104 larger than the collision
frequency for energy transfer. This means that the relaxation
of the average velocity is much faster and hence in contrast to
the average electron energy this quantity relaxes very rapidly.
Figure 5 shows good agreement between results derived by
fluid models and by the PIC/MC method. As in the case of the
average electron energy, the PIC/MC method is not suitable
for the determination of the average velocity of electrons in
the region ahead of the front because in this region only a few
electrons exist.

4.3. On the use of transport data in the high-order fluid model

Another important issue in streamer modelling concerns the
choice of transport data in fluid models. The origin of, and
the difference between bulk and flux transport coefficients in
the context of streamer studies have been recently discussed
in [19, 20, 47]. In this section, we consider the implications of
the transport coefficient duality in the context of our high-order
fluid model for streamers. We also discuss to what extent
the differences between transport coefficients obtained by the
two-term approximation for solving Boltzmann’s equation and
those obtained by a multi-term theory affect the accuracy of
streamer models.

(a)

(b)

(c)

Figure 6. Temporal evolution of (a) the electron density, (b) the ion
density and (c) the electric field in a planar negative ionization front
in N2 with a reduced electric field E/n0 of 590 Td ahead of the
front. Displayed are the spatial profiles obtained with three different
sets of input data as indicated in the graph.

Figure 6 shows the temporal evolution of the electron and
ion densities and of the electric field in a streamer front when
the reduced electric field ahead of it is 590 Td. The calculations
are performed for three different sets of input data as indicated
in the figures. The inadequacy of using bulk data in the
high-order model is clearly evident (bearing in mind the very
good agreement between the profiles obtained with the flux
data and with the PIC/MC method, as shown in the previous
section): the streamer velocity is higher and the electron/ion
density in the streamer head and in the streamer channel is
higher than with the flux transport data. For increasing electric
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field the discrepancies in the streamer velocity increase further,
as illustrated in figure 2. Similar trends have been observed in
the preceding paper [31] where planar fronts were modelled
with the first-order fluid model. In both models, streamers
with bulk data are faster and the electron/ion density is higher
in both the streamer head and the streamer channel. This
follows directly from the fact that in N2 the bulk mobility of the
electrons is larger than the flux mobility. On the other hand, as
already shown in section 4.1 we observe excellent agreement
between our high-order profiles obtained with the flux data and
those predicted by a PIC/MC method.

Figure 7 displays the temporal evolution of the average
electron velocity, of the average electron energy and of the
averaged electron energy flux under the influence of an electric
field of 590 Td for different times as indicated on the graph.
The inadequacy of using bulk data is again evident. In the
early stage of the streamer development (when the electric
field is not entirely screened), the average electron energy
calculated using the bulk data is higher in all relevant streamer
regions. When the transition process from an avalanche to
a streamer is finished, we see a clear discrepancy between
the average energies in the region ahead of the streamer
front. As simulated planar fronts with bulk data are faster,
the corresponding profiles of the average energy are shifted
forward. However, for a fully developed streamer, there are
no significant deviations between the average energies in the
streamer channel. In this region, the electric field is screened,
and the average energies are slowly thermalizing although
not fully relaxed, as shown in the previous section. The
average electron velocity behaves exactly in the same manner
as the average electron energy when comparing results with
flux or bulk data. The only difference is associated with
the fact that the average velocity of electrons is almost fully
relaxed in the streamer channel regardless of the type of data
used in calculations. The average electron energy flux shows
similar behaviour.

In earlier streamer investigations it has not been generally
investigated to what extent the two-term Boltzmann equation
results for various transport coefficients affect the accuracy
of the model predictions. The limitations of the two-term
approximation for solving Boltzmann’s equation have been
illustrated many times in past in the context of swarm studies
[34, 49–51]. Here the question arises of whether a similar
conclusion can be drawn for streamers taking into account
that the streamer development is a non-linear, non-stationary
and non-hydrodynamic problem where space charge effects are
important and where the electron energy varies from thermal
values in the streamer channel up to a few tens of eV in the
outer region of the streamer for the fields considered here. It
is clear that the anisotropy of the velocity distribution function
may be considerable in various streamer regions and hence we
will compare profiles for different streamer properties using
the two-term and multi-term results for transport data as an
input in modelling.

Figure 6(a) shows that the ionization level behind the
streamer front calculated using the BOLSIG+ transport data
is lower while the streamer velocity is the same. Surprisingly,
the profiles of the electric field, the average electron energy and

(a)

(b)

(c)

Figure 7. The same simulations and plots as in the previous figure,
but now for (a) the average electron velocity v, (b) the average
electron energy ϵ and (c) the average electron energy flux ξ . Again,
velocity v and energy flux ξ here are negative quantities, and their
absolute value is plotted.

the average electron velocity obtained with the multi-term flux
data or with the BOLSIG+ data agree very well. This is a clear
indication that internal errors of the two-term approximation
associated with the ionization rate can be directly used to
understand the differences in the profiles of the electron
and ion densities in the streamer channel (see figure 1(c)
in the preceding paper). However, this conclusion cannot
be generalized to other gases or other conditions than those
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Figure 8. Electron density, ion density and electric field in N2 in an external electric field of 350 Td. The two lines indicate solutions of the
high-order fluid model with and without the energy flux term at the same instance of time. The initial condition is the same, and the flux
transport data are used.

Figure 9. The same instant and plot as in figure 8, but now average electron energy, negative average electron velocity and negative average
electron energy flux are plotted.

studied here. As pointed out recently by White and co-workers
[34, 50] one may never be sure about the accuracy of the
two-term approximation as various transport properties show
different sensitivities with respect to this approximation in
different energy ranges. For example, the inadequacy of the
two-term approximation has been recently demonstrated for
CF4 [49] and CH4 [50]. In the preceding paper, it was shown
that the velocity of a streamer in the first-order fluid model
is significantly affected by choosing either the two-term or
the multi-term solution. Therefore, when high precision is
required the best option is to use a multi-term approach and/or
a MC simulation technique to calculate the input data for fluid
models regardless of their order.

4.4. Simulation of planar fronts with and without the energy
flux term

In this section, we compare the results of the high-order fluid
model with and without the energy flux term (4). In the model
without the energy flux term the energy flux ξ in the energy
balance equation (3) is set to zero, and therefore the energy
flux balance equation (4) does not need to be considered. This
approach was already used in the case of streamer corona
discharge dynamics [28, 29] and for analysis of ionization wave
dynamics in low-temperature plasma jets [13]. Figures 8 and 9
show the streamer properties for a reduced electric field E/n0

of 350 Td at time t = 1.5 ns. First, we see that the high-order
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(a)

(b)

Figure 10. (a) Ionization level behind the planar front, and (b) the
absolute value of the front velocity as a function of the reduced
electric field E/n0 ahead of the front. Results are shown for the
high-order fluid model with or without the energy flux term, as well
as for the PIC/MC model. Flux transport data are used as an input in
the fluid models.

fluid model with the energy flux term gives higher electron
and ion densities within the streamer channel than without the
energy flux. For increasing E/n0 these differences increase
further, as shown in figure 10(a). The electric field exhibits the
typical streamer behaviour; the observed differences between
the high-order fluid models with and without the energy flux
term follow from the time delay needed for the space charge
to become high enough and distort the externally applied
spatially homogeneous electric field in these two models. This
property is even more evident for the streamer velocity shown
in figure 10(b). Figures 8 and 9 clearly show that under our
simulation conditions the streamer front propagates faster in
the high-order fluid model with the energy flux term.

Furthermore, the average electron energy and the average
electron velocity ahead of the streamer depend clearly on the
fact whether the electron energy flux is included or not. The

average electron energy has a steep gradient between the outer
streamer region and the streamer channel. In this spatially
narrow region the energy decreases from the range between
10 and 20 eV to essentially thermal values in the streamer
channel. It is clear that the correct treatment of the energy flux
in the high-order fluid model is critical for an accurate energy
transport between the different streamer regions. In view of the
close agreement between the present results with the energy
flux term and those predicted by a PIC/MC method, established
in the previous sections, we must conclude that the high-order
fluid model without the energy flux term is qualitatively right
but quantitatively wrong under the conditions simulated.

4.5. Simulation of planar fronts with and without the
high-order tensor

In this section, we investigate the influence of the high-order
tensor in the energy flux equation. In order to truncate the
system after the energy flux equation, in the preceding paper
this tensor was expressed by a product of two lower order
tensors times a parameter β. In all previous sections, we used
β = 1 which is a natural guess. Here we investigate how the
simulation results depend on β.

Figure 11 shows the profiles of the electron density, the
electric field, the average electron energy and the average
electron flux for a reduced electric field E/n0 of 350 Td at time
1.5 ns. One can immediately see that increasing the parameter
β increases the velocity of the streamer very slightly. All
other quantities remain essentially unaltered in the streamer
channel indicating their weak sensitivity with respect to β.
Only in the limit of the highest electric field considered here
do the streamer properties in the channel respond slightly to
the variation of the parameter β. Ahead of the streamer front,
however, we observe variations in the streamer properties even
for the reduced electric field of 350 Td. As expected, the most
sensitive quantity with respect to variations in β is the average
electron energy flux.

In section 2.2, we have derived that our high-order model is
well posed if β = 0 or β ! 1. We have solved our system for a
range of values forβ and reduced electric fieldsE/n0 and it was
found that β = 1 ensures the best agreement between profiles
obtained by the high-order fluid model and by the PIC/MC
method. This validates the closure assumption associated
with the contribution of high-order tensors in the energy flux
equation, as discussed in the preceding paper. Furthermore,
if we analyse the profiles of various streamer properties for
β = 0, the simulation results agree very well with those derived
by the PIC/MC method. The importance of this is twofold.
First, the influence of the high-order tensors in the energy flux
equation is less than initially expected. Second, taking β = 0
is a very good approximation, and it will significantly reduce
the computation costs for the differential equations in 3D.

5. Conclusion

In the previous paper, we have derived the equations and
the transport and reaction parameters of a high-order fluid
model for streamer discharges. In this paper we have briefly
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Figure 11. Profiles of (a) electron density, (b) electric field, (c) average electron energy and (d) average electron energy flux for β = 1,
β = 2 and β = 3. The results are shown for E/n0 of 350 Td at time 1.5 ns.

presented an accurate and efficient way to numerically solve
the high-order fluid model. These numerical schemes are then
used to study the propagation of negative streamer fronts in
N2. Then we compared the high-order fluid model and the
first-order fluid model with a PIC/MC model. While the first-
order model is very commonly used for streamer simulations,
it can be clearly seen that the high-order model is a much better
approximation of the full particle dynamics. This concerns not
only quantitative, but also qualitative differences. In particular
we observe the following facts.

(a) The non-local effects in the profile of the average electron
energy are present both in the PIC/MC model and in
the high-order model, but are missing in the first-order
model due to the local field approximation. The slope
of the average electron energy in the region ahead of the
streamer is related to the spatial variation of the average
electron energy in the avalanche phase of the streamer
development. And the slope of the average electron energy
in the streamer channel is striking and an inherent property
of a streamer as well, as the electrons cannot immediately
relax to the low or vanishing field in the streamer interior.

(b) Bulk and flux transport coefficients for electrons can differ
substantially in so-called non-conservative regions where
ionization, attachment, detachment and recombination
take place. Here one needs to take care which coefficients
to implement. Streamers in nitrogen with bulk data
are faster and create a much higher electron density in
the streamer channel. When the streamers in nitrogen
are calculated with BOLSIG+ data, their velocity is not
affected. However, in the streamer channel and in the
streamer head we have found differences between the
electron densities in our high-order fluid model when we
inserted either BOLSIG+ data or our flux data for the
electron transport coefficients.

(c) When we conducted streamer simulations with our high-
order model, either including or excluding the energy
flux, various streamer properties showed that the energy
flux term cannot be neglected. Streamers without the

energy flux term are slower and create a lower electron
density in the streamer channel. In the region ahead of
the streamer, the average electron energy and the average
electron velocity also change when the energy flux is
neglected.

(d) The validity of the closure assumption associated with the
treatment of high-order terms in the energy flux equation
is studied through the variation of the parameters used to
parametrize the expression in which high-order tensors
are expressed in terms of lower order moments. We have
pointed out that although the average electron energy and
average electron energy flux in the outer region of the
streamer are influenced by this parameter, the demand for
a strict consideration of the high-order tensor in the energy
flux equation may be relaxed. This follows from the fact
that it is almost impossible to notice the differences in
the streamer velocity and electron density in the streamer
channel for different parameters used to parametrize the
high-order terms.

Although in this paper, we have tested our model on planar
fronts, the theory of the high-order model has been developed
in the previous paper without restrictions for the full three-
dimensional setting. An important aspect to be addressed in
the future is our closure assumption for the pressure tensor that
we assumed to be isotropic. This restriction will be removed
in future work.

Finally, we would like to emphasize that though this
study has concentrated on electron dynamics mainly in planar
streamer fronts, the theory and the associated numerical
solution of the system of differential equations are equally valid
for ions up to the energy balance equation. Therefore, we have
derived a new modelling framework that is widely applicable
in reactive plasmas in full 3D.
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Appendix

In this appendix, we briefly describe the discretization of our
system of differential equations. The finite volume method is
used to discretize the system (7)–(12) in space. The basic
principle of the control volume method is to maintain the
conservative properties of the system (7) over every volume
element. We introduce control volumes or cells Vj as follows:

Vj := [j,x, (j + 1),x] , xj :=
(

j +
1
2

)
,x,

j = 0, 1, ..., M − 1, (A.1)

where ,x = L/M is the spatial grid size while L is the length
of the simulation domain.

The numerical solution uj (t) has to be interpreted as an
approximation of the average value of u(x, t) over the control
volume Vj at time t , i.e.

uj (t) = 1
,x

∫

Vj

u(x, t) dx. (A.2)

To approximate the spatial derivative in (7) we use the
second-order central difference discretization [52],
∂u(x, t)

∂x
= 1

2,x
(u(x + ,x, t) − u(x − ,x, t)) + O(,x2),

(A.3)

which has already been used in previous first-order fluid
models and associated codes (see for example [18]). Hence,
equation (7) can be re-written in difference form:

∂uj (t)

∂t
+

1
2,x

A(uj (t))(uj+1(t) − uj−1(t)) = F (uj (t)),

(A.4)

where i = 1, 2, . . . , M − 2.
As discussed in the main text, homogeneous Neumann

or Dirichlet boundary conditions are imposed: at the left
boundary, i = 0, we impose a homogeneous Neumann
boundary condition

∂u(0, t)

∂x
= 0 or u−1(t) = u0(t). (A.5)

In this manner, we provide the value u−1(t) = u(− 1
2,x, t)

at i = −1 which exceeds the computational domain. At
the right boundary, i = M − 1, we impose a homogeneous
Dirichlet boundary condition for the electron number density,
while for the other components of u we impose homogeneous
Neumann boundary conditions to obtain a value for uM(t) =
u(L + 1

2,x, t).
To approximate the electric potential ϕ (6) we use the same

strategy as for the primitive variables u, i.e. ϕ is averaged over
control volumes. Hence, the electric field E(x, t) is discretized

on the edges of the control volume, denoted by E(xj− 1
2
, t). But

since we consider a 1D case, the electric field follows directly
from the charge densities by integrating equation (12) along
the x-direction:

E(x, t) = E(0, t) +
e

ϵ0

(∫ x

0
(nion(x

′, t) − n(x ′, t)

)
dx ′.

(A.6)
We can then calculate E(xj , t) by

E(xj , t) = 1
2 (E(xj− 1

2
, t) + E(xj+ 1

2
, t)). (A.7)

Now we are going to consider the ordinary differential
equation system (A.4). To approximate the time derivatives
we use the classical RK4 (Runge–Kutta 4) time-integration
scheme [52], which is a fourth-order method. This is an explicit
method which always has a bounded stability domain. In our
case, the stability condition has the following form:

max
1!i!4

|λi,t/2,x| " C, (A.8)

or by taking into account β !
√

β +
√

β(β − 1), when β ! 1,
we have

β
,t

2,x

√
2 max ε

3m
" C. (A.9)

This condition is called the CFL stability criterion, where C
depends on the particular time-integration method and space
discretization. In our simulations, C is set to 0.1.
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